# The Distribution of $v_2(3n + 1)$ and Toward a State-Augmented Potential Function for the Collatz Conjecture

AUTHOR 7B7545EB2B5B22A28204066BD292A036 5D4989260318CDF4A7A0407C272E9AFB

April 24, 2025

#### Abstract

The Collatz conjecture posits that iterating the map T(n) = n/2if n is even and T(n) = 3n + 1 if n is odd eventually leads to 1 for all positive integers n. Heuristic arguments supporting the conjecture often rely on the assumption that the map behaves pseudo-randomly, leading to an expected decrease in magnitude. A key component is the distribution of the 2-adic valuation  $v_2(3n + 1)$  for odd n. This paper rigorously computes this distribution using natural density, proving the density of odd n with  $v_2(3n + 1) = k$  is  $2^{-k}$  for each  $k \ge 1$ . This confirms  $E[v_2(3n + 1)] = 2$ , providing a formal basis for the heuristic downward drift argument  $(2 > \log_2 3)$ . We discuss implications and limitations of density results. Motivated by this and the shortcomings of static potential functions, we propose a novel state-augmented potential function framework, incorporating trajectory history via the previous step's valuation  $(k_{prev})$ , to better model the effects of transient carry-bit dynamics and overcome limitations of static functions.

### 1 Introduction

The Collatz conjecture, also known as the 3n + 1 problem, concerns the iteration of the function  $T : \mathbb{N} \to \mathbb{N}$  defined by

$$T(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ 3n+1 & \text{if } n \text{ is odd.} \end{cases}$$

The conjecture asserts that for every starting integer  $n \ge 1$ , the sequence of iterates  $n, T(n), T(T(n)), \ldots$  eventually reaches the cycle  $4 \rightarrow 2 \rightarrow 1$ . Despite its simple statement, the conjecture remains unproven and is famously difficult [3].

Much intuition stems from heuristic arguments suggesting iterates decrease "on average". A crucial element is the map  $T_{\text{odd}} : \mathcal{O} \to \mathcal{O}$  for odd n:

$$T_{\rm odd}(n) = \frac{3n+1}{2^{\nu_2(3n+1)}},\tag{1}$$

where  $v_2(m)$  is the 2-adic valuation. The magnitude change is roughly  $\log_2(3) - v_2(3n+1)$ . Heuristics often assume  $v_2(3n+1)$  follows  $P(k) \approx 2^{-k}$ , leading to  $E[v_2(3n+1)] \approx 2$ . Since  $2 > \log_2(3) \approx 1.58$ , this suggests an average decrease, supported by computational evidence and results on density [5] and boundedness [4].

The first goal here is to provide a rigorous basis for this heuristic by computing the exact natural density distribution of  $v_2(3n + 1)$ .

Our main result is:

**Theorem 1.1.** Let  $\mathcal{O} = \{1, 3, 5, ...\}$ . For each integer  $k \ge 1$ , the natural density of  $S_k = \{n \in \mathcal{O} \mid v_2(3n+1) = k\}$  within  $\mathcal{O}$  is  $2^{-k}$ .

This confirms  $E[v_2(3n+1)] = 2$  under this measure. Yet, density results fall short of universal proof, and static potential functions struggle with the discontinuous dynamics [Lagarias2010]. Thus, recognizing these limitations, we propose a novel state-augmented framework for constructing a potential function, aiming to capture the influence of transient carry-bit dynamics more effectively.

## 2 Preliminaries

**Definition 2.1** (2-adic Valuation). For  $m \in \mathbb{Z} \setminus \{0\}$ ,  $v_2(m)$  is the exponent of the highest power of 2 dividing m.  $v_2(0) = \infty$ .

**Definition 2.2** (Natural Density on Odd Integers). For  $S \subseteq \mathcal{O}$ ,  $\delta(S) = \lim_{m \to \infty} |\{n \in S \mid n \leq 2^m - 1\}|/2^{m-1}$ , if it exists.

## **3** Distribution of $v_2(3n+1)$ : Proof of Theorem 1.1

**Lemma 3.1.** For odd n,  $v_2(3n+1) = k \iff 3n \equiv -1 \pmod{2^k}$  and  $3n \not\equiv -1 \pmod{2^{k+1}}$ .

*Proof.* Equivalent to  $3n + 1 \equiv 2^k \pmod{2^{k+1}}$ .

**Lemma 3.2.** For  $k \ge 1$ ,  $a_k = -3^{-1} \pmod{2^k}$  exists, is unique, and is odd.

*Proof.* Inverse exists as  $gcd(3, 2^k) = 1$ . If  $3n \equiv -1 \pmod{2^k}$ , then  $gcd(n, 2^k) = 1$ , so n is odd.

#### 3.1 Examples for k=1, k=2, and k=3

We summarize the density calculation for small k:

*Example* 3.3 (Case k=1). Condition  $n \equiv 3 \pmod{4}$ . Proportion = 1/2.

*Example* 3.4 (Case k=2). Condition  $n \equiv 1 \pmod{8}$ . Proportion = 1/4.

*Example* 3.5 (Case k=3). Condition  $n \equiv 13 \pmod{16}$ . Proportion = 1/8.

#### 3.2 General Proof

Proof of Theorem 1.1. Let  $a_k = -3^{-1} \pmod{2^k}$  and  $a_{k+1} = -3^{-1} \pmod{2^{k+1}}$ . The condition  $v_2(3n+1) = k$  is  $n \equiv a_k \pmod{2^k}$  and  $n \not\equiv a_{k+1} \pmod{2^{k+1}}$ . The condition  $n \equiv a_k \pmod{2^k}$  defines two odd classes mod  $2^{k+1}$ :  $a_{k+1}$  and  $a'_k = a_{k+1} + 2^k \pmod{2^{k+1}}$ . The class  $a_{k+1}$  yields  $v_2 \ge k + 1$ ; the class  $a'_k$  yields  $v_2 = k$ . Thus,  $v_2(3n+1) = k$  is equivalent to  $n \equiv a'_k \pmod{2^{k+1}}$ , a single odd class. For  $m \ge k+1$ , this condition defines  $2^{m-(k+1)}$  classes among the  $2^{m-1}$  odd classes modulo  $2^m$ . The proportion is  $2^{m-k-1}/2^{m-1} = 2^{-k}$ . This is independent of m for  $m \ge k+1$ . The natural density  $\delta(S_k) = 2^{-k}$ .  $\Box$ 

Remark 3.6 (Finite Moduli Behavior). The proportion is exact for moduli  $2^m$  with  $m \ge k+1$ .

Remark 3.7 (Density vs. Finite Intervals). Density over [1, X] might show deviations.

# 4 Discussion and Implications

#### 4.1 Expected Value of $v_2(3n+1)$

**Corollary 4.1.**  $E[v_2(3n+1)] = 2$  under the natural density measure.

Proof.  $\sum_{k=1}^{\infty} k \cdot \delta(S_k) = \sum_{k=1}^{\infty} k \cdot 2^{-k} = 2.$ 

Supports heuristic average decrease  $\approx \log_2 3 - 2 \approx -0.415$  bits/odd step.

#### 4.2 Implications for Collatz Approaches

- Supports pseudo-random / ergodic models [5, 4].
- Highlights importance of carry dynamics [6].
- Provides statistical constraints against cycles.

#### 4.3 2-adic Perspective

Arises naturally from Haar measure on  $\mathbb{Z}_2^*$  [2].  $T_{\text{odd}}$  is measure-preserving. Non-zero integral of  $v_2(3x+1) - \log_2 3$  shows it is not a coboundary, supporting ergodic negative drift  $\mu$ -a.e. Bridging to  $\mathbb{N}^+$  remains open.

#### 4.4 Limitations

Density results don't prove universal convergence [1]. Static potential functions fail, often due to insufficient state information [3].

## 5 Toward a State-Augmented Potential Function

The limitations motivate exploring potential functions incorporating more state, aiming to model carry effects. We propose a \*\*state-augmented (or history-augmented) potential function\*\* framework.

**Definition 5.1** (Augmented State). For  $n \in \mathcal{O}, n > 1$ , if  $n \neq n_0$ , let  $n = T_{odd}(n_{prev})$ . The state includes n and  $k_{prev} = v_2(3n_{prev} + 1)$ . For the initial  $n_0$ , a convention is needed; for simplicity, we suggest setting  $k_{prev} = 2$  (the expected value) as a default, although optimal initialization might depend on  $n_0 \pmod{2^J}$  and requires further analysis.

**Definition 5.2** (Hypothetical State-Augmented Potential Function Form). We hypothesize f depending on this state, possibly:

$$f(n, k_{prev}) = \log_2 n + \Psi(n \pmod{2^J}, k_{prev})$$

for large J, with  $f(1, \cdot) = 0$ .

The Lyapunov requirement is: for  $n \to n' = (3n+1)/2^k$  with  $k = v_2(3n+1)$ ,

$$f(n',k) \le f(n,k_{prev}) \tag{2}$$

implying the condition on  $\Psi$ :

 $\Psi(n \pmod{2^J}, k_{prev}) - \Psi(n' \pmod{2^J}, k) \ge \log_2(3 + 1/n) - k$ 

**Illustrative Example of**  $\Psi$ : The simple form  $\Psi(a, k_{prev}) = C - c \cdot k_{prev}$  fails. A viable  $\Psi$  likely requires more complex dependence on its arguments. Future work might explore  $\Psi$  with terms like  $c \cdot k_{prev} \cdot \phi(n \pmod{2^J})$ , where  $\phi$  might weight residue classes based on their influence on subsequent carry dynamics or 2-adic properties.

**Potential Interpretation and Advantages:** Allows potential  $\Psi$  to depend explicitly on the previous step's outcome  $(k_{prev})$ , potentially tracking "energy" storage/release better than static functions.

**Challenges and Novelty:** Defining and analyzing  $\Psi$  is the main challenge. Proving inequality (2) universally is the goal. Incorporating history via  $k_{prev}$  is a \*\*novel conceptual direction\*\*, addressing limitations of static functions by accounting for transient carry outcomes.

## 6 Conclusion

We rigorously established the  $2^{-k}$  natural density for  $v_2(3n + 1) = k$ , confirming  $E[v_2(3n + 1)] = 2$ . This grounds heuristic arguments but doesn't resolve the conjecture. The failure of standard potential functions underscores the need to model the discontinuous carry dynamics more accurately.

We propose a novel framework exploring state-augmented potential functions,  $f(n, k_{prev})$ , incorporating memory via  $k_{prev}$ . This approach aims to model the system's dynamics more faithfully than static functions. While constructing and validating such a function is challenging, this direction offers a potential path forward, meriting further investigation.

## References

- [1] C. J. Everett, Iteration of the number-theoretic function f(2n) = n, f(2n+1) = 3n+2. Advances in Mathematics, 25(1) (1977), pp. 42–45.
- [2] F. Q. Gouvêa, *p-adic Numbers: An Introduction*. Second Edition, Springer, 1997.
- [3] J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem. American Mathematical Society, 2010.
- [4] T. Tao, Almost all orbits of the Collatz map attain almost bounded values. Forum of Mathematics, Pi, 10 (2022), e1.
- [5] R. Terras, A stopping time problem on the positive integers. Acta Arithmetica, 30 (1976), pp. 241–252.
- [6] G. J. Wirsching, The Dynamical System Generated by the 3n+1 Function. Lecture Notes in Mathematics 1681, Springer, 1998.